
Hello programmers. This discussion introduces arrays as
used by C and C++.

1

An array can hold multiple pieces of data of the same type.
The position in an array is called an index. The first position
in an array is at index 0;

Here is an example: Declare an array of 10 integers:
 int score[10]; // score can hold 10 integers
The index values for the array go from 0 to 9.

Since the index starts at 0, index values for an array of 10
elements are 0, 1, 2, 3, 4,5 ,6 7, 8, and 9. Trying to use a
negative index value or a value of 10 or higher would be an
illegal attempt to access locations that are not in the array.

2

Array Index Starts from Zero. It is most common to start
counting from zero because the first index (position) in an
array starts with zero.

This may be confusing for most Americans who count the
ground floor as the first floor, but the rest of the world
counts the first floor as the floor above ground. Index values
start at zero because it is easier to internally to compute the
address of individual elements by adding the index number
times the element size to the starting address of the array.

3

The first example shows only that an array of 10 integers has
been declared. The square brackets [] are used to identify
an array. Enough room in memory is reserved to store 10
integers.

If the array is declared as an automatic variable inside a
block of curly-braces { } then the contents of the array are
not initialized. This means that they are full of garbage data
that happened to be in those memory cells before the array
was declared. It is up to the programmer to place some
known value in the array elements before trying to use
them, increment them, etc. If the array is declared with the
static keyword, or if the array is declared as global data
outside of any block of code, then the contents of the array
are initialized to zeros.

4

The second example shows an array being declared with 10
integers, and the contents of the array are being initialized
are being initialized at the same time. The curly-braces are
placed around the initializer data, and each element is
separated by a comma.

4

If an array is initialized when it is declared, it is not
necessary to give the size of the array. The size of the array
is determined by the number of elements listed inside the
curly-braces.

5

The C and C++ compilers need to know the size of an array
when it is declared. Here is an array of 10 integers. For most
compilers, the size of an integer is 4 bytes, so the size of the
array would be 40 bytes. The sizeof operator can be used to
determine the size in bytes for data types, arrays, and other
things.

The sizeof operator can also be used to determine the
number of elements in an array by taking the size of the
array and dividing it by the size of each element in the array.

6

If the size of an array is declared and the array is initialized
with fewer values than the size of the array, the remaining
elements are set to zeros.

7

An individual element in an array can be accessed by giving
the name of the array and placing the index number of the
element inside square brackets. In these examples,
x gets a 7 from index position 4
y gets a 10 from index position 5
z gets an 8 from index position 1
The index into an array must be an integer data type, which
in C and C++ includes the char data type.
An error will happen if trying to access elements before or
after the end of the array.

8

The index can be an expression. In this example, n is a 3, so
n+1 is a 4. Therefore, x gets a 7 from location 4.

9

This is a very common way the for statement is written
when working with arrays.

Notice that the index i starts at zero and goes up to but
not including 10. The test statement in the for loop is i <
10; This for loop is being used to compute the total of all
the values that are in the array, and then compute and
display the average score.

Now that we are working with arrays, it might make
more sense why it is most common to count for loops
starting at 0 and going up to but not including the
highest value.

10

Here is a fantastic reason to use constants. The same
constant is used when declaring the size of the array, and
also used inside the for loop to increment through the
array.

If CLASS_SIZE ever changes, it will be changed in every
location that it is used.

What would happen if you just used the number 10 and
forgot to change one of them. Or even worse, if you
wanted to change the size of the array from 10 to 12 and
then used find and replace in the editor to change all
10's to 12's, a value of 100 would also change from 100
to 120, and a value of 7108 would be changed to 7128.

11

This is probably not what would be desired, but
unintended find and replaces have happened to me.

11

In this case, the loop moves the index from 0 to 10
because the test in the loop is i<=10 which includes the
index value of 10.

The last position in the array is 9. The program will either
report an error, or even worse, store something in
memory past the end of the array, probably on top of
some other data without any warning. It may be hard to
find out why data in a different part of the program got
changed when that part of the program looked OK.

12

Arrays can have more than one dimension.
Here is an example of a single-dimensional array. It is created for one student with five scores.
 int studentScores[5];

And now, lets create a double-dimensional array that can
hold nine students with five scores for each student.
 int classScores[9][5];

Suppose I was teaching three different classes with nine
students in each class, and there are five scores for each
student.
 int schoolScores[3][9][5];

13

Starting with a single-dimensional array. I have int
studentScores[5]; The data in this array that shows 7, 9, 7, 7,
7 is not initialized when the array is created. For this
example, the data would be placed in the array by code
when the program is being run.

14

Here is an example of creating a double-dimensional array
for 9 students with 5 scores for each student. Again, the
data in this array does not exist when the array is initially
declared. Look closely at the square-brackets [] when the
array is declared. The first set of square-brackets are used to
define the number of rows, and a second set of square
brackets define the number of columns in each row. This
may be different if you are used to some other
programming languages which would declare a double-
dimensional array using parentheses and use a comma
between the row and column definition. In Visual Basic, the
array would be defined as Dim classScores(9, 5) As Integer

15

Let's progress to defining a three-dimensional array. I might
want to do this if I had three classes and 9 students in each
class with 5 scores for each student. We are again using
separate sets of square-brackets when defining the multi-
dimensional array.

16

Another alternative to multi-dimensional arrays would be
parallel arrays. Here I am declaring a separate array for each
student. Although it is not too bad if there are only a few
parallel arrays, it gets really messy as the number of parallel
arrays grows.

17

Look closely at how the curly-braces and commas are used
when initializing a double-dimensional array. There is an
open and close curly-brace for the entire array, and then
separate blocks of open/close curly-braces for each row.
Commas separate the individual data for each row, and a
comma is placed after the closing curly-brace for each
internal row. The double-dimensional array is finished with a
close curly-brace and a semicolon.

18

The spaces or tabs when initializing data are optional. Just
add spaces and tabs to make your code as readable as
possible. You can place the data on one or more lines in
your program for easier reading. Just remember where the
curly-braces and commas are placed when using multiple
lines and then use the same organization on fewer lines.

19

Here is a short code fragment that uses nested for loops to
computes the average score for all the students in the class.
This time, I am using constants to define the dimensions of
the array. It is called a code fragment because it is missing
the #include, main() and curly-braced for the block for
main.

Before the outer loop starts, the classTotal is declared and
initialized to zero. The outer for loop is going down through
the rows for each student. The inner for loop is getting each
quiz score for a student and adding it to the classTotal.
When the inner for loop ends, the outer for loop moves to
the next student and the inner for loop is run again and
continues adding scores to the classTotal.

20

Finally, when all scores have been added into classTotal, the
cout at the end displays "The class average is " and the
average which is computed to be the classTotal divided by
the number of scores for all students. The number of scores
for all students is the product of STUDENTS times QUIZZES.

20

This concludes the introduction to arrays as used by C and
C++. Bye for now.

21

