
Hello programmers. This presentation introduces the
concept of working with parallel arrays where the data in
two or more arrays are related to each other by their
position in the arrays. This is a presentations for using C-
strings. Another presentation is provided for using C++
strings. If you only want to study the C-language, you can
skip the presentation on C++ strings. However, if you plan on
using C++, I recommend at least studying the code for the C-
strings version.

1

Sometimes it is convenient to work with two or more
parallel arrays. The example below shows two arrays
where the data in the two arrays is related to each other
by their respective position in the arrays, called the
index value.

2

In this example, the program asks the user to enter an
abbreviation, search the stateAbbrev array for a match,
remember the index position in the
array where the match was found and use the same
index to look up the name of the state in the stateNames

array. If a match was not found, a "Not Found" message
will be displayed.

For example, if the user enters the abbreviation CA, we
would search the array that contains the abbreviation
until we found "CA" in index position 4, then look up the
full name of the state "California" in index 4 in the array
that holds the full names of the states.

3

Here is a sample execution. The program asks the user to
enter a state abbreviation or the word "Exit".
The first entry is "CA" in capital letters. The program
responds with "California".
The second entry is "mn" in small letters. The program
responds with "Minnesota".
The third entry is "xy" which is not an abbreviation for a
state. The program responds with "Not Found".
The fourth entry is "Exit" which ends the program.

4

If writing the program in C++, the #include statements need
to be.
#include <iostream> // for console input/output.
#include <cstring> // to use the C-string library, and
using namespace std;

Here is part 1 of the program showing how the two arrays
are each filled with string literals. These arrays contain
character pointers to C-strings. The declaration of the arrays
start with char *, the name of the array, open/close square
brackets [] and the = assignment operator. char * indicates
that the data type is a pointer to characters which works
with both C and C++. Nothing is placed in the square
brackets because the size of the arrays are going to be
determined by their initialization data. The data for the

5

array is placed within a curly-brace pair { }. Each string literal
is separated by a comma. The last element in the array does
not need a comma after it, but most compilers won't
complain if you put one there.

The declaration and initialization of each array is similar,
except the second array contains strings of state names
instead of abbreviations. When working with parallel arrays,
it is extremely important that if one array gets updated, the
other array must be updated in the same position. For
example if Washington DC becomes a state, both arrays
need updating in the same location. It can be easy to mess
this up, so be careful.

5

Here is the executable code that does the actual work. First
the variables are declared for the program. char
userRequest[10]; is declaring an array of 10 characters that
will be used when inputting from the keyboard. The integer i
will be used to index through the arrays. arraySize is
computed to be the number of elements in the stateNames
array by taking the entire memory size of the array of
character pointers and dividing it by the size of an individual
character pointer. This should be equal to 50. The nice thing
about having the program compute the number of elements
is that if states get added to the arrays, then only the arrays
themselves need updated and the program will
automatically compute the new size.

The program starts executing code by asking the user to

6

enter a state abbreviation or the word "Exit". A C++ program
would use cout instead of printf.

The program then inputs the user's selection as a string of
multiple characters. A C-language program would use either
scanf("%s", userRequest); or scanf_s("%s", userRequest, 10);
with Visual Studio. Previously when using scanf or scanf_s
we needed to use the & address-of operator in front of the
name of an integer or double data-type variable that is
going to receive the data from the keyboard. When scanf or
scanf_s is inputting into an array, we don't need the &
address-of operator because the name of an array is
automatically the address of the array. A C++ program uses
cin.getline(userRequest, 10); where userRequest is the
name of the character array, size 10.

The program has two loops. The outer loop is a while loop is
used to get the two-character state abbreviation from the
user and then use the inner for loop to search the
stateAbbrev array for a match. The outer for loop ends
when the user types the word "Exit" instead of a state
abbreviation. The construction of the outer while loop looks
like a sentinel value loop in that the first input is done
before the start of the loop.

The while loop and its test condition is shown here as
while(_stricmp(userRequest, "Exit") != 0) { .
The test condition says keep executing the loop as long as it
evaluates to TRUE.

6

I am using _stricmp to compare two C-strings because I am
using Microsoft Visual Studio. Your compiler may be using
stricmp without the underscore, or maybe even casecmp. It
would be really nice if every compiler used the same code
for string compare.

The letter i in stricmp or the word case in casecmp says to
ignore case when comparing the strings. This way it does
not matter if the user types the word "exit" or "Exit" with
capital or small letters. These functions return a negative
integer if the first string is less than the second string, a zero
if both strings are the same, or a positive value if the first
string is greater than the second string. As long as the user's
input is not the word "Exit", the result of the string compare
will be non-zero and the code inside the while loop will
execute.

Three things are inside the while loop.
1) a for loop is used to search the stateAbbrev array for a
match with the user's input. If a match is found, the full
name of the state is displayed from the stateName array and
the break; statement exits the loop with the variable i set to
the index in the array where the match was found. If a name
is not found, then the for loop will end with i equal to 50
because the for loop's test statement is i<arraySize;

2) The second thing in the while loop is an if statement that
checks to see if i is equal to arraySize. If it is, then the for
loop made it all the way to the end of the array without

6

finding a match and executing the break statement. Then
the "Not found" message is output.

3) The third thing in the while loop completes the
construction of a sentinel value loop by getting the next
piece of data, which in this case is asking for another state
abbreviation and then going back to the top of the while
statement. It is here that the test to see if the user typed
"Exit". If so, the while loop ends and the return 0; statement
ends the program.

6

This is the end of the discussion on parallel arrays using C-
strings. If C++ is your language of preference, then you
should definitely study the similar presentation on C++
strings. Especially the parts about declaring an array of C++
strings and how the string compare ignore case works. Until
next time, bye for now.

7

