
7/31/2021

1

C/C++ PROGRAMMING

Search an Array
(Sequential Search)

Dan McElroy

This presentation is offered under a Creative Commons Attribution Non-Commercial

Share license. Content can be considered under this license unless otherwise noted.

Search Methods

There are several ways to search a block of data. The
two most popular are:

• Sequential – Start at the beginning of the data and
look for a match. If none is found, move to the next
piece of data and look again.

• Binary Search – The data must be sorted first. Start in
the middle of the data and see if the search value is
too high or too low. If your value is too low, divide
the data lower half of the data in half again and try
again. Etc.

7/31/2021

2

Samples of Search Methods

Binary Search: Suppose you are looking
for the name Jones in the phone book.

If you open the phone book n the middle
at the M's, you have gone too far. Divide the lower half
of the book and you may end up at the F's. Oops, you
are now too low. Divide what is left and you may end
up at the K's. Now you are too high, divide what is left
and you end up at the J's.

Sequential Search: Now you are at the J's, go down the
list one name at a time until you find the name Jones
that you are looking for.

Sequential Search

This discussion covers only the
sequential search. A disk text file
is read into an array. The user is
asked for a two-character State
Abbreviation (e.g. CA) and the
program searches the array and displays a match if
found, or a message saying that no match was found.

7/31/2021

3

Know the Data
Know what the data looks like
before writing the program. The text
file to be read is named "States.txt"
and contains a two-character
abbreviation for the state,
commonwealth or federal district, a
tab character and the name of the
state. The name of the state may
contain one or more characters.

There are 51 lines, each less than
100 characters.

Make It Simple
To make this first discussion simple,
just read each line into an element
of an array and display the entire
line if a match on the abbreviation
is found.

7/31/2021

4

Create an Array in Memory
From looking at the data, it looks like
there are 51 lines and the longest
line is 26 characters for the District
of Columbia.

The minimum array size would be
[51][27]. Make sure there is room for
the NULL byte at the end of each
line.

To be save, set the array size to hold
up to 60 lines, 30 char max each line.

HIPO Chart
INPUT PROCESSING OUTPUT

States file
User Input:
 2-char abbrev

1) Open the States file
2) Read the file into an array
3) Ask user for abbreviation
4) Search array for abbreviation

Name of State
 --or—
"Not Found"

The program will be written in four parts not including
the information for the header files and declaration of
variables. A separate function will be used to search the
array for a match for the state abbreviation.

7/31/2021

5

Header Files & Variables
// SequentialSearch.cpp

// CIS-054 C/C++ Programming

// Dan McElroy

#include <iostream> // for cin and cout

#include <fstream> // for file access

#include <cctype> // for toupper()

using namespace std;

// prototypes for functions declared later in the project

char* SearchStates(char States[60][30], int length, char ch1, char ch2);

int main(int argc, char* argv[])

{

 ifstream stateFile; // connection to the disk

 char listOfStates[60][30]; // room for 60 lines, 30 char each

 int linesInFile; // lines in the text file

 char abbrev1, abbrev2; // two char state abbreviation

 char *foundMsg; // line with State or "Not Found"

 char tryAgain;

Part 1 – Open the File

 // ----- PART 1 open the file, check for errors

 stateFile.open("/Users/Dan/Desktop/States.txt");

 if (stateFile.fail())

 {

 cout << "Unable to open States.txt" << endl;

 return 1;

 }

7/31/2021

6

Part 2 – Read the File

// ----- PART 2 read the file into the listOfStates array

linesInFile = 0; // set array index to 0

stateFile.getline(listOfStates[linesInFile], 30); // 1st record

while (linesInFile<60 &&

 !stateFile.eof() &&

 listOfStates[linesInFile]!=0)

{

 linesInFile++; // successful read

 stateFile.getline(listOfStates[linesInFile], 30); // next

}

stateFile.close(); // all done with the file, close it

Part 3 – Ask for Abbreviation, Search
// ----- PART 3 ask for an abbreviation and search the array

do

{

 cout << "Enter a two character state abbreviation: ";

 cin >> abbrev1 >> abbrev2;

 abbrev1 = toupper(abbrev1); // convert to upper case

 abbrev2 = toupper(abbrev2);

 // ----- PART 4 search the array

 foundMsg = SearchStates(listOfStates, linesInFile,

 abbrev1, abbrev2);

 cout << foundMsg << endl;

 cout << endl << "Do you want to look for again? ";

 cin >> tryAgain;

} while (tryAgain=='y' || tryAgain=='Y');

7/31/2021

7

Part 4 – Search Array Function
// Search List of States Array for a two-character abbreviation

// returns: line containing abbreviation, or "Not Found"

char* SearchStates(char States[60][30], int length,

 char ch1, char ch2)

{

 int i = 0; // start at the first element in the array

 while (i < length)

 {

 // see if the abbreviation is first two char on line

 if (ch1==States[i][0] && ch2==States[i][1])

 return States[i]; // match was found, return it

 i++; // move to the next elemen, keep looking

 }

 // reached the end and did not find a match

 return "Not Found";

}

