
2/4/2016

1

C-LANGUAGE

INPUT & OUTPUT

C-Language
Output with printf

Input with scanf and gets_s
and Defensive Programming

Copyright © 2016 Dan McElroy

Should you know scanf and printf?

scanf is only useful in the C-language, not C++.
However, printf can still be used in C++ and is
used in many other programming languages. It is
important to know printf even if you are
learning C++.

printf is covered first in this discussion. You can
skip scanf if you are only interested in C++

2/4/2016

2

Stream I/O

stdin stdout

Your Program
scanf printf

The most common way for a C program to input from a keyboard and output to the
display is to use scanf and printf which stand for scan-formatted and print-formatted.

NOTE: Operating systems like Linux
can use pipes and redirection to
cause stdin and stdout to use other
devices or even other programs

Use \n in C to move the cursor to the next line on the
display. The backslash character \ is called the 'escape'
character. It gives the next character a special meaning.
Make sure you enter the backslash \ and not the slash /

scanf and printf
Don't Know the Data Type

There are many data types that are used in the C-
language such as: int, float, double, char, char* etc.

In order to properly work with these different data
types, a "control string" is passed to these functions to
identify the type of data and how it is to be processed.
scanf and printf can work with multiple pieces of data,
each with different data types each time a request is
made to them.

2/4/2016

3

How Does printf work?
 printf (control, arg1, arg2, ...);

printf converts and prints text from the control string

and the arguments referred to in the control string.

There can be zero or more arguments. For example:
 int age = 25;
 char name[] = "Joe";
 printf ("Greetings\n");
 printf ("Hello %s, you are %d years old.\n", name, age);

The output will be:
 Greetings
 Hello Joe, you are 25 years old.

How Does printf work?

 int age = 25;
 char name[] = "Joe";
 printf ("Greetings\n");
 printf ("Hello %s, you are %d years old.\n", name, age);

The output will be:

 Greetings
 Hello Joe, you are 25 years old.

The \n causes the cursor to go to the next line.

printf with
no arguments

2/4/2016

4

The printf Format Specifiers
Control Description

%d Decimal integer. The argument should be an integer.

%o Octal integer. The argument should be an integer.

%x Hexadecimal integer. The argument should be an integer.

%X Hexadecimal integer. A-F is displayed in upper case

%c The argument should be the address of a character.

%s Character string. The argument should a character array

%e Floating point number in engineering format. The argument should be a
float. Example 5632 displays as 5.632E3

%f Floating point number. The argument should be a float.

%lf Long-float. The argument should be a double.

%g Use %e or %f which ever is shorter. Non-significant zeros are not printed

%% If the character after the % is not a control character, print it. %% prints %

printf Field Width and Precision

The printf control specifiers can have an optional
field width and/or precision listed. Examples:
 double length = 42.578;
 printf ("%7.2lf", length);

 double length = 42.578;
 printf ("%-7.2lf", length);

 4 2 . 5 8

Width =7 characters

printf uses a total of 7 character positions with
2 digits past the decimal and is right-justified

small-L

4 2 . 5 8

Width =7 characters

Left-justified

2/4/2016

5

printf Field Width and Precision

Examples with %s:
char msg[] = "Hello world!";

printf ("%s", msg);

printf ("%14s", msg);

printf ("%-14s", msg);

printf ("%7.10s", msg);

printf ("%-7.10s", msg);

H e l l o w o r l d !

 H e l l o w o r l d !

H e l l o w o r l d !

H e l l o w

 H e l l o w

1 2 3 4 5 6 7 8 9 10 11 12 13 14

WARNING

printf uses the control string to determine the
number and data type for the arguments that
follow. printf gets confused and prints nonsense
answers if there are not enough arguments,
they are the wrong type, or the arguments are
not listed in the same order as the control
specifiers!

2/4/2016

6

How Does scanf work?

O scanf reads a stream of data from the

keyboard

O A sample program demonstrates how scanf

can read three numbers from the keyboard,

add them together and display the sum

O scanf uses Whitespace characters to separate

one piece of data from the next piece

The function scan
scanf has the following format:
 scanf(control, arg1, arg2, ...)
scanf reads from the standard input and
interprets the characters according to the
control string, converts the input to the data
type specified in the control string and stores
the results in the arguments. The arguments
must be the addresses of memory locations. The
names of simple variables must be preceded by
the & address-of operator. By definition, the
name of an array is the address of the array and
is not preceded by the &.

2/4/2016

7

The scanf Control String

The control string contains one or more
specifications that tell scanf how to interpret the
input data. Blanks and tabs are ignored, ordinary
characters (not %) which are expected to match
the input data and conversion specifiers which
start with %, contain an optional field width and
a conversion control character.

scanf Field Width

The control specifiers can also have a count of
the number of characters to process. For
example, %3d causes scanf to read three
characters from the input and convert them into
a decimal integer. %10s causes scanf to read up
to 10 characters and store them into a character
array.

2/4/2016

8

The scanf Conversion Specifiers
Control Description

%d Decimal integer. The argument should be the address of an integer.

%o Octal integer. The argument should be the address of an integer.

%x Hexadecimal integer. The argument should be the address of an integer.

%c Input the next character, even if it a whitespace character. The argument
should be the address of a character. To skip over the whitespace and
read the next character, use %1s.

%s Character string. The argument should a character array that is large
enough to hold the string. A NULL byte is placed at the end of the string.

%f Floating point number. The argument should be the address of a float.

%lf Long-float. The argument should be the address of a double.

Why the address-of operator is needed
scanf

Your program

int x1;
printf ("Enter a number ");
scanf ("%d", &x1);






Example:
The program displays: "Enter a number"
and then  calls scanf to read a decimal number from the keyboard.
"%d" in the control string indicates that scanf is to read a decimal
number.  If the user would press the [5] [2] and [1] keys, scanf
takes those individual keys and convert them into the decimal value
of 521. Since your program is in a different part of memory than
scanf, scanf needs to know where to save the data.  The address of
the variable x1 is passed to scanf as a parameter &x1. scanf now
knows where to place the data.

2/4/2016

9

Whitespace

. 5 \n\t 7 \n . . . \t 9 \n . represent the space bar
 was pressed
\n represent the Enter key
 was pressed
\t represent the Tab key
 was pressed

Ignore the leading
spaces then read
the 5 into the
variable a

Ignore the Enter
and Tab keys then
read the 7 into the
variable b

Ignore the Enter
spaces and Tab
then read the 9
into the variable c

Sample Program – Add 3 Numbers

cin

stdio.h is a header file, thus the .h
It has all the information needed to
compile scanf, printf and other
routines.

Inside the parentheses for scanf is the
control string enclosed in quotes "
and the address of the variables that
will receive the data read by scanf.
%d indicates that a decimal value is
to be read.
The & character is the address-of
operator. Because scanf is in one part
of memory and your variables are in
another part, scanf needs the address
of each of the variables so that it will
know where to place the data. printf
does not need the & because the
program is giving data not receiving.

2/4/2016

10

Sample Program – Add 3 Numbers

cin

The same result if the numbers were
entered on the same line or on different
lines because the values are separated by
whitespace which can be either spaces,
tabs or the Enter key.

scanf vs. scanf_s

scanf is the original scan-formatted routine for
the C-language. As C became more popular, it
was found that users could enter more
characters than the program was expecting and
could cause the program to crash, or worse. The
updated version of scanf is called scanf_s, or
scan-formatted-secure. The size of an array that
receives a character string must be specified in
scanf_s to prevent a buffer overrun.

1/2

2/4/2016

11

scanf vs. scanf_s

Some C-compilers force the programmer to use
scanf_s while other compilers still use scanf and
have not implemented scanf_s. When looking at
this presentation on the C-language character
input, you may need to adjust your code to
select either scanf_s or scanf. Unless otherwise
noted, you can change scanf_s to scanf if you
want to run the sample code.

2/2

Unexpected Inputs and
Defensive Programming

O What happens if scanf is expecting one data

type and something else is input?

O How do we find out what scanf is actually

reading?

O How do we detect an error from scanf and

what should be done if an error occurs?

2/4/2016

12

Unexpected Data

scanf is expecting to
input integers into
a b c

Where did this come from???

a) Use code to display the values

scanf is expecting to input integers into
 a b c
scanf reads the 5 into the variable a, then
reads the 6 into the variable b, then when
scanf went to read into the variable c it saw
the decimal point. Integers are whole
numbers. No decimals allowed. Since the
variable c was not initialized, whatever
garbage was in its memory location is what
was used.

2/4/2016

13

b) Use Debug to display the values

When using Microsoft Visual Studio:
1) Click in the gray bar on the left to
 set a breakpoint
2) Use Debug/Start (F5) to run the
 program
3) Enter the numbers. The program
 will pause at the breakpoint
4) Hover the mouse over each of the
 variables to display their values

Possible Solutions
Solution #1 – Initialize the variables to 0 to prevent
weird numbers from showing, but this does not
stop wrong answers from being displayed.
Solution #2 – change the definition of the variables
from type int to type double. This will allow the 6.2
to be read without an error, but the program will
still fail if the user inputs a non-numeric character
such as X. This is NOT a complete solution.

Solution #3 – Test scanf and compare the number
of data items that were expected to be read by
scanf and the number that were actually read.

2/4/2016

14

Solution #1 - Initialize the Variables

scanf is expecting to
input integers

The program ran and
produced an answer, but
the answer is WRONG!
It only added 5 + 6
Because c was not read.
scanf stopped trying to
read c when it saw the
decimal point.

Not a good solution. The answer is WRONG

Solution #2 – double Data Type

scanf is expecting to
input floating point
numbers %lf
is for long-float

It works ! All input was numeric

It failed. Some input was non-numeric

Not a good solution.
It still does not detect illegal inputs.

2/4/2016

15

It works ! All input was numeric

The error was detected and it was
properly processed by the program

This is a good solution

Solution #3 – Test count of items

More on scanf vs. scanf_s
scanf_s was developed to prevent users from entering more
text data as a string of characters into arrays than there was
room. %s identifies a string. Example:
 char name[20];

 scanf ("%s", name); // read characters into name

There is only room for 19 characters plus one more for the
string terminator. If the user were to enter more than 19
characters an undetected buffer overrun would occur.
scanf_s uses one more parameter to identify the size of the
array. Example:
 char name[20];

 scanf_s ("%s", name, 100); // array size = 100

If scanf_s is not implemented on your compiler then
you need to use scanf and not include the array size

2/4/2016

16

The arguments to scanf must be pointers, in
other words they must be the address of
variables. A simple variable must have the
address-of operator & but arrays do not need
the & because the name of an array IS the
address of the array. By far the most common
error in writing is:
 scanf_s("%d", x);

instead of
 scanf_s("%d", &x);

gets gets_s

Both gets and gets_s read a full line of
text without stopping each time
whitespace is detected.

gets_s is the newer secure version of
gets and has a second parameter to
indicate the size of the character array
that will be receiving the data. Because
of the danger of buffer overruns, gets
should not be used.

2/4/2016

17

gets gets_s
The format for these two functions is:
 gets (char *);
 gets_s (char *, int size);

where:
 char * is the address of an array of characters
 that will receive the characters
 int size is the size of the array
WARNING The use of gets is a common cause of
buffer overruns and program crashed. However
some C compilers do not have the gets_s function
and gets must still be used.

scanf stops at whitespace

Anything after a space is lost by scanf. Many last
names have spaces. Sometimes McElroy has a space
and becomes Mc Elroy so letters get addressed to
Mr. Elroy instead of Mr. Mc Elroy

2/4/2016

18

scanf stops at whitespace
gets_s does not (gets = get string)

By using gets_s all of the characters up to the
Enter key are read into the character array fullName.

