2/4/2016

C-LANGUAGE EEEOE

cout scanf printf

& INPUT & OUTPUT [= |

11

C-Language
Output with printf
Input with scanf and gets_s
and Defensive Programming

& - & SO %

‘5

Copyright © 2016 Dan McElroy

Should you know scanf and printf?

scanf is only useful in the C-language, not C++.
However, printf can still be used in C++ and is
used in many other programming languages. It is
important to know printf even if you are
learning C++.

printf is covered first in this discussion. You can
skip scanf if you are only interested in C++

2/4/2016

Stream 1/0

........... Your Program

b LU - printf
. - = T
Free JPG file download - www.psdgraphics.com

The most common way for a C program to input from a keyboard and output to the
display is to use scanf and printf which stand for scan-formatted and print-formatted.
int aj
printf (“Enter a number: ");
scanf_s ("%d", &a);
printf ("The number squared is %d\n", a*a);

Use \n in C to move the cursor to the next line on the
display. The backslash character \ is called the 'escape'
character. It gives the next character a special meaning.
Make sure you enter the backslash \ and not the slash /

—_——
NOTE: Operating systems like Linux
can use pipes and redirection to I

| cause stdin and stdout to use other

—_—————— —

scanf and printf
Don't Know the Data Type

There are many data types that are used in the C-
language such as: int, float, double, char, char* etc.

In order to properly work with these different data
types, a "control string" is passed to these functions to
identify the type of data and how it is to be processed.
scanf and printf can work with multiple pieces of data,
each with different data types each time a request is
made to them.

2/4/2016

How Does printf work?

printf (control, argl, arg2, ...);

printf converts and prints text from the control string
and the arguments referred to in the control string.
There can be zero or more arguments. For example:
int age = 25;
char name[] = "Joe";

printf ("Greetings\n");
printf ("Hello %s, you are %d years old.\n", name, age);

The output will be:

Greetings
Hello Joe, you are 25 years old.

How Does printf work?

printf with
no arguments
1nt age = 25;
ar name[] =

printf (" Greetl n");

printf ("Héllo %s, you are %d years old.\n", name, age);

The outpdat will be:

Greetlngs
Hello Joe, you are 25 years old.

The \n causes the cursor to go to the next line.

%d

%0

The printf Format Specifiers

Decimal integer. The argument should be an integer.
Octal integer. The argument should be an integer.
Hexadecimal integer. The argument should be an integer.
Hexadecimal integer. A-F is displayed in upper case

The argument should be the address of a character.
Character string. The argument should a character array

Floating point number in engineering format. The argument should be a
float. Example 5632 displays as 5.632E3

Floating point number. The argument should be a float.
Long-float. The argument should be a double.
Use %e or %f which ever is shorter. Non-significant zeros are not printed

If the character after the % is not a control character, print it. %% prints %

printf Field Width and Precision

The printf control specifiers can have an optional
field width and/or precision listed. Examples:

double length = 42.578; me=7ﬁﬁ?dﬂs
printf ("%7.21f", length); A
_ (42 . 5]8]
small-L . — .
printf uses a total of 7 character positions with
2 digits past the decimal and is right-justified
double length = 42.578; wmm=7qﬁ?aem

printf ("%-7).21f", length);

Left-justified — 4‘2"‘5‘8‘ ‘ |

2/4/2016

printf Field Width and Precision

Examples with %s:
char msg[] = "Hello world!";

12 3 4 5 6 7 8 9 10 11 12 13 14

printf ("%s", msg); He

d

r

ld

printf ("%-14s", msg);

d!

1
printf ("%14s", msg); H
1
1

H
printf ("%7.10s", msg); [u
printf ("%-7.10s", msg); |

WARNING

answers if there are not enough arguments,

not listed in the same order as the control
specifiers!

printf uses the control string to determine the
number and data type for the arguments that
follow. printf gets confused and prints nonsense

they are the wrong type, or the arguments are

2/4/2016

2/4/2016

How Does scanf work?

o scanf reads a stream of data from the
keyboard

o A sample program demonstrates how scanf
can read three numbers from the keyboard,
add them together and display the sum

o scanf uses Whitespace characters to separate
one piece of data from the next piece

The function scan

scanf has the following format:
scanf(control, argl, arg2, ...)
scanf reads from the standard input and
interprets the characters according to the
control string, converts the input to the data
type specified in the control string and stores
the results in the arguments. The arguments
must be the addresses of memory locations. The
names of simple variables must be preceded by
the & address-of operator. By definition, the
name of an array is the address of the array and
is not preceded by the &.

The scanf Control String

The control string contains one or more
specifications that tell scanf how to interpret the
input data. Blanks and tabs are ignored, ordinary
characters (not %) which are expected to match
the input data and conversion specifiers which
start with %, contain an optional field width and
a conversion control character.

scanf Field Width

The control specifiers can also have a count of
the number of characters to process. For
example, %3d causes scanf to read three
characters from the input and convert them into
a decimal integer. %10s causes scanf to read up
to 10 characters and store them into a character
array.

2/4/2016

2/4/2016

The scanf Conversion Specifiers

%d Decimal integer. The argument should be the address of an integer.

%0 Octal integer. The argument should be the address of an integer.

%X Hexadecimal integer. The argument should be the address of an integer.
%cC Input the next character, even if it a whitespace character. The argument

should be the address of a character. To skip over the whitespace and
read the next character, use %1s.

%s Character string. The argument should a character array that is large
enough to hold the string. A NULL byte is placed at the end of the string.

%t Floating point number. The argument should be the address of a float.

%1t Long-float. The argument should be the address of a double.

Why the address-of operator is needed
scanf o Your program
"~ s @]

\ _
printf ("Enter a number");

Example: Ncanf ("%d", &x1);
The program displays: "Enter a number"
and then @ calls scanf to read a decimal number from the keyboard.
"%d" in the control string indicates that scanf is to read a decimal
number. @ If the user would press the [5] [2] and [1] keys, scanf
takes those individual keys and convert them into the decimal value
of 521. Since your program is in a different part of memory than
scanf, scanf needs to know where to save the data. ® The address of
the variable x1 is passed to scanf as a parameter &x1. scanf now
knows where to place the data.

Whitespace

/* input */

printf ("Enter three numbers: ");

count = scanf_s ("%d %d %d", &a, &b, &c)
/* process */

sum = a + b + c;

/* output */

printf ("The sum is %d\n", sum);

M C\Windows\system32\cmd.exe

nter three numbers:
7
The sum is 21

[.0.] .../ s\a\t7\n . .| .\t 9\n|

. represent the space bar

) was pressed

N v /R/_/\ ~
Ignore the leading
spaces then read
the 5 into the
variable a

Ignore the Enter
and Tab keys then
read the 7 into the
variable b

Ignore the Enter
spaces and Tab
then read the 9

\n represent the Enter key
was pressed

\t represent the Tab key
was pressed

into the variable ¢

Sample Program — Add 3 Numbers

#include <stdio.h> 4\

int main(int argc, char* argv[])
{

int a;

int b;

int c;

int sum;

/* input */
printf ("Enter e numbers: ");
scanf_s ("%d %d %d", &a, &b, &c);
/* output */

printf ("The sum is %d\n", ?Em)\

return @;

AY

7

stdio.h is a header file, thus the .h
It has all the information needed to
compile scanf, printf and other
routines.

Inside the parentheses for scanf is the
control string enclosed in quotes "
and the address of the variables that
will receive the data read by scanf.
%d indicates that a decimal value is
to be read.

The & character is the address-of
operator. Because scanf is in one part
of memory and your variables are in
another part, scanf needs the address
of each of the variables so that it will
know where to place the data. printf
does not need the & because the
program is giving data not receiving.

2/4/2016

Sample Program — Add 3 Numbers

#include <stdio.h>

M C\Windows\system32\cmd.exe

int main(int argc, char* argv[]) Enter th bers: 5 7 9

{ ’ fhetum 2™ 0 7)
. Press any key to cofinue . . .
int a;
int b; The same result if the numbers W
int c; entered on the same lineorond
int sum; lines because the values are sepa
* .y whitespace which can be either §|

b N ! tabs or the Enter key.

printf ("Enter three numbers: ");
scanf_s ("%d %d %d", &a, &b, &c); /

dows\system32\cmd.exe

/* output */

printf ("The sum is %d\n", sum); three numbers:

return ©;

sum is 21
Press any key to continue . . .

1/2

scanf vs. scanf_s

scanf is the original scan-formatted routine for
the C-language. As C became more popular, it
was found that users could enter more
characters than the program was expecting and
could cause the program to crash, or worse. The
updated version of scanf is called scanf_s, or
scan-formatted-secure. The size of an array that
receives a character string must be specified in
scanf_s to prevent a buffer overrun.

2/4/2016

10

2/2

scanf vs. scanf_s

Some C-compilers force the programmer to use
scanf_s while other compilers still use scanf and
have not implemented scanf_s. When looking at
this presentation on the C-language character
input, you may need to adjust your code to
select either scanf_s or scanf. Unless otherwise
noted, you can change scanf_s to scanf if you
want to run the sample code.

Unexpected Inputs and
Defensive Programming

o What happens if scanf is expecting one data
type and something else is input?

o How do we find out what scanf is actually

reading?
o0 How do we detect an error from scanf and
what should be done if an error occurs?

2/4/2016

11

Unexpected Data

#include <stdio.h>

int main(int argc, char* argv[])
{
int a;
int b;
int c;
int sum;

/* input */
umbers: ");

printf (" ;
scanf_s ("%d %d %d" &b, &c);
/* output

=8 C:\Windows\system32\cmd.exe
EEféF‘fFFEE‘EGEEEFET“‘ETEz§f§32}74
The sum is -858993449

Press any key t¥continue .

Where did this come from

printf ("The sum is %d\n",
return ©;

scanf is expecting to
input integers into
abec

a) Use code to display the values

#include <stdio.h>

int main(int argc, char* argv[])
{

int a;

int b;

int ¢

M C\Windows\system32\cmd.exe L

nter three numbers:
a=

b=6
c=-858993460
Press any key to continue . . . _

/* input */
printf ("Enter three numbers: ");

/* output */
printf ("a = %d\n", a);

. u . i abc
;:;:E: E"S _ ijt:": 2;; scanf reads the 5 into the variable a, then
reads the 6 into the variable b, then when
return @; scanf went to read into the variable ¢ it saw
} the decimal point. Integers are whole

scanf is expecting to input integers into

numbers. No decimals allowed. Since the
variable ¢ was not initialized, whatever
garbage was in its memory location is what
was used.

2/4/2016

12

b) Use Debug to display the vaIues

1
2
3
4
5
6
7
8

=

1@
11
12
13
O .,
15
16
17
18
19

#include <stdio.h>

=int main(int argc, char*

{

| C\Users\Dan\Documents\Visual Ste)

onso\

arevL1)

int a;
int b;
int c;

Enter three numbers: 5 l 7

int sum;
// input

printf ("Enter three numbers:
scanf_s ("%d%d%d", &a, &b, &c);
// process

sum = a + b + c;

// output @ ¢ -858993460
printf ("The sum is %d\n", sum)

return ©;

When using Microsoft Visual Studio:

1) Click in the gray bar on the left to
set a breakpoint

2) Use Debug/Start (F5) to run the
program

3) Enter the numbers. The program
will pause at the breakpoint

4) Hover the mouse over each of the
variables to display their values

Solution #1 —

Possible Solutions

Initialize the variables to 0 to prevent

weird numbers from showing, but this does not
stop wrong answers from being displayed.

Solution #2 — change the definition of the variables
from type int to type double. This will allow the 6.2
to be read without an error, but the program will
still fail if the user inputs a non-numeric character
such as X. This is NOT a complete solution.

Solution #3 — Test scanf and compare the number
of data items that were expected to be read by
scanf and the number that were actually read.

2/4/2016

13

Solution #1 - Initialize the Variables

#include <stdio.h>

int main(int argc, char* argv[])

{

int a = @;
int b = 8;
int ¢ = @;

int sum;

/* input */
printf (2
scanf_s |("%d %d %d", &a, &b} &c);]

A

¥ C\Windows\system32\cmd.exe

Enter three numbers: S 6.2 7
he sum is
Press any keyWo continue .

The program ran and
produced an answer, but
the answer is WRONG!

/* output

printf ("The sum is %d\‘\

scanf is expecting to
input integers

return ©;

‘ It only added 5 + 6

Because ¢ was not read. |
scanf stopped trying to

n", su

read c when it saw the
decimal point.

Not a good solution. The answer is WRONG

Solution #2 — double Data Type

#include <stdio.h>

int main(int argc, char* argv[])

{

double a;
double b;
double c;
double sum;

/* input */
printf (-

scanf_s |("%1f %1f %1f", &a, &b, &c);

ﬁ C\Windows\system32\cmd.exe
Enter three numbers: 5 .
The sum is 18. 200000

Press any key to continue .

scanf is expecting to

It works ! All input was numeric

n

/* outple

printf ("The sum is %1f\n", sum);

return @;

/ input floating point
numbers %lf M C\Windows\system32\cmd.exe
is for long-float nter three numbers: .
The sum is -9.255%6e+@61

Press any key to continue .

It failed. Some input was non-numeric

<

{1}

A

Not a good solution.
It still does not detect illegal inputs.

2/4/2016

14

ETE Solution #3 — Test count of items

int b;

int ¢;

int sum;
int count;

/* input */

printf ("Enter three numbers: ");

count = scanf_s ("%d %d %d", &a, &b, &c);
/* check for errors */

if (count != 3) /* test for not equal 3 */
{

printf ("Error reading data\n");

return 1;
1
else
{
/* process */
sum = a + b + ¢}
/* output */
printf ("The sum is %d\n", sum);
1
return @;

= C:\Windows\system32\cmd.exe

Press any key to contindae . - .

It works ! All input was numeric

@ C:\Windows\system32\cmd.exe

Ent th b 5 6 X
nter ree numbers:
Error reading data l______J

Press any key to continue . . . o

The error was detected and it was
properly processed by the program

This is a good solution

More on scanf vs. scanf_s

scanf_s was developed to prevent users from entering more
text data as a string of characters into arrays than there was
room. %s identifies a string. Example:

char name[20];

scanf ("%s", name); // read characters into name
There is only room for 19 characters plus one more for the

string terminator. If the user were to enter more than 19
characters an undetected buffer overrun would occur.
scanf_s uses one more parameter to identify the size of the

array. Example:
char name[20];

scanf_s ("%s", name, 100);

// array size = 100

If scanf_s is not implemented on your compiler then
you need to use scanf and not include the array size

2/4/2016

15

Final scanf warning

The arguments to scanf must be pointers, in
other words they must be the address of
variables. A simple variable must have the
address-of operator & but arrays do not need
the & because the name of an array IS the
address of the array. By far the most common
error in writing is:

scanf_s("%d", x);
instead of

scanf_s("%d", &x);

gets gets_s

Both gets and gets_s read a full line of
text without stopping each time
whitespace is detected.

gets_s is the newer secure version of
gets and has a second parameter to
indicate the size of the character array
that will be receiving the data. Because
of the danger of buffer overruns, gets
should not be used.

2/4/2016

16

gets gets_s

The format for these two functions is:
gets (char *);
gets_s (char *, int size);

where:

char * isthe address of an array of characters
that will receive the characters
int size isthe size of the array

WARNING The use of gets is a common cause of
buffer overruns and program crashed. However
some C compilers do not have the gets_s function
and gets must still be used.

scanf stops at whitespace

|
Anything after a space is lost by scanf. Many last
names have spaces. Sometimes McElroy has a space
and becomes Moc Elroy so letters get addressed to
Mr. Elroy instead of Mr. Mc Elroy

Uf i}

#include <stdio.h>
int main(int argc, char* argv[])
{
// declare the variables
char fullName[1@1]; // room for 188 characters
printf ("Enter your full name: ");
scanf_s ("%s", fullName, 1€0);
printf ("Hello %s\n", fullName);
t 0 &N C:\Windows\system32\cmd.exe == X
return o; Ent epeie full name:|Dan McElroy |
Hellg D h d LQR_J
; pesab Sandhey do v Rl

2/4/2016

17

scanf stops at whitespace

gets_s does not (gets = get string)

#include <stdio.h>

int main(int argc, char* argv[])

{
// declare the variables
char fullName[1e1]; //
printf ("Enter your full name: ");
gets_s (fullName, 100);
printf ("Hello %s\n", fullName);
return 8;

b

room for 16@ characters

B C\Windows\system32\cmd.exe

C=rrey X |

Ent er suews meme:] Dan McElroy|
A A e

Press \an ontinue . . .

By using gets_s all of the characters
Enter key are read into the character

up to the
array fullName.

2/4/2016

18

